On some sparsity related problems and the randomized Kaczmarz algo- rithm

نویسندگان

  • LIANG DAI
  • Liang Dai
چکیده

This thesis studies several problems related to recovery and estimation. Specifically, these problems are about sparsity and low-rankness, and the randomized Kaczmarz algorithm. This thesis includes four papers referred to as Paper I, Paper II, Paper III, and Paper IV. Paper I considers how to make use of the fact that the solution to an overdetermined system is sparse. This paper presents a three-stage approach to accomplish the task. We show that this strategy, under the assumptions as made in the paper, achieves the oracle property. In Paper II, a Hankel-matrix completion problem arising in system theory is studied. Specifically, the use of the nuclear norm heuristic for this task is considered. Theoretical justification for the case of a single real pole is given. Results show that for the case of a single real pole, the nuclear norm heuristic succeeds in the matrix completion task. Numerical simulations indicate that this result does not always carry over to the case of two real poles. Paper III discusses a screening approach for improving the computational performance of the Basis Pursuit De-Noising problem. The key ingredient for this work is to make use of an efficient ellipsoid update algorithm. The results of the experiments show that the proposed scheme can improve the overall time complexity for solving the problem. Paper IV studies the choice of the probability distribution for implementing the row-projections in the randomized Kaczmarz algorithm. The result proves that a probability distribution resulting in a faster convergence of the algorithm can be found by solving a related Semi-Definite Programming optimization problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A generalized implicit enumeration algorithm for a class of integer nonlinear programming problems

Presented here is a generalization of the implicit enumeration algorithm that can be applied when the objec-tive function is being maximized and can be rewritten as the difference of two non-decreasing functions. Also developed is a computational algorithm, named linear speedup, to use whatever explicit linear constraints are present to speedup the search for a solution. The method is easy to u...

متن کامل

On the Relation Between the Randomized Extended Kaczmarz Algorithm and Coordinate Descent

In this note we compare the randomized extended Kaczmarz (EK) algorithm and randomized coordinate descent (CD) for solving the full-rank overdetermined linear least-squares problem and prove that CD needs less operations for satisfying the same residual-related termination criteria. For the general least-squares problems, we show that running first CD to compute the residual and then standard K...

متن کامل

Shared Context Probabilistic Transducers

Recently a model for supervised learning of probabilistic transduc ers represented by su x trees was introduced However this algo rithm tends to build very large trees requiring very large amounts of computer memory In this paper we propose a new more com pact transducer model in which one shares the parameters of distri butions associated to contexts yielding similar conditional output distrib...

متن کامل

Linear convergence of the Randomized Sparse Kaczmarz Method

The randomized version of the Kaczmarz method for the solution of linear systems is known to converge linearly in expectation. In this work we extend this result and show that the recently proposed Randomized Sparse Kaczmarz method for recovery of sparse solutions, as well as many variants, also converges linearly in expectation. The result is achieved in the framework of split feasibility prob...

متن کامل

Global conjugate gradient method for solving large general Sylvester matrix equation

In this paper, an iterative method is proposed for solving large general Sylvester matrix equation $AXB+CXD = E$, where $A in R^{ntimes n}$ , $C in R^{ntimes n}$ , $B in R^{stimes s}$ and  $D in R^{stimes s}$ are given matrices and $X in R^{stimes s}$  is the unknown matrix. We present a global conjugate gradient (GL-CG) algo- rithm for solving linear system of equations with multiple right-han...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014